madmom.evaluation.tempo

This module contains tempo evaluation functionality.

madmom.evaluation.tempo.load_tempo(values, split_value=1.0, sort=False, norm_strengths=False, max_len=None)[source]

Load tempo information from the given values or file.

Parameters:

values : str, file handle, list of tuples or numpy array

Tempo values or file name/handle.

split_value : float, optional

Value to distinguish between tempi and strengths. values > split_value are interpreted as tempi [bpm], values <= split_value are interpreted as strengths.

sort : bool, optional

Sort the tempi by their strength.

norm_strengths : bool, optional

Normalize the strengths to sum 1.

max_len : int, optional

Return at most max_len tempi.

Returns:

tempi : numpy array, shape (num_tempi, 2)

Array with tempi (rows, first column) and their relative strengths (second column).

Notes

The tempo must have the one of the following formats (separated by whitespace if loaded from file):

‘tempo_one’ ‘tempo_two’ ‘relative_strength’ (of the first tempo) ‘tempo_one’ ‘tempo_two’ ‘strength_one’ ‘strength_two’

If no strengths are given, uniformly distributed strengths are returned.

madmom.evaluation.tempo.tempo_evaluation(detections, annotations, tolerance=0.04)[source]

Calculate the tempo P-Score, at least one or both tempi correct.

Parameters:

detections : list of tuples or numpy array

Detected tempi (rows, first column) and their relative strengths (second column).

annotations : list or numpy array

Annotated tempi (rows, first column) and their relative strengths (second column).

tolerance : float, optional

Evaluation tolerance (max. allowed deviation).

Returns:

pscore : float

P-Score.

at_least_one : bool

At least one tempo correctly identified.

all : bool

All tempi correctly identified.

Notes

All given detections are evaluated against all annotations according to the relative strengths given. If no strengths are given, evenly distributed strengths are assumed. If the strengths do not sum to 1, they will be normalized.

References

[R17]M. McKinney, D. Moelants, M. Davies and A. Klapuri, “Evaluation of audio beat tracking and music tempo extraction algorithms”, Journal of New Music Research, vol. 36, no. 1, 2007.
class madmom.evaluation.tempo.TempoEvaluation(detections, annotations, tolerance=0.04, double=True, triple=True, sort=True, max_len=None, name=None, **kwargs)[source]

Tempo evaluation class.

Parameters:

detections : str, list of tuples or numpy array

Detected tempi (rows) and their strengths (columns). If a file name is given, load them from this file.

annotations : str, list or numpy array

Annotated ground truth tempi (rows) and their strengths (columns). If a file name is given, load them from this file.

tolerance : float, optional

Evaluation tolerance (max. allowed deviation).

double : bool, optional

Include double and half tempo variations.

triple : bool, optional

Include triple and third tempo variations.

sort : bool, optional

Sort the tempi by their strengths (descending order).

max_len : bool, optional

Evaluate at most max_len tempi.

name : str, optional

Name of the evaluation to be displayed.

Notes

For P-Score, the number of detected tempi will be limited to the number of annotations (if not further limited by max_len). For Accuracy 1 & 2 only one detected tempo is used. Depending on sort, this can be either the first or the strongest one.

tostring(**kwargs)[source]

Format the evaluation metrics as a human readable string.

Returns:

str

Evaluation metrics formatted as a human readable string.

class madmom.evaluation.tempo.TempoMeanEvaluation(eval_objects, name=None, **kwargs)[source]

Class for averaging tempo evaluation scores.

pscore

P-Score.

any

At least one tempo correct.

all

All tempi correct.

acc1

Accuracy 1.

acc2

Accuracy 2.

tostring(**kwargs)[source]

Format the evaluation metrics as a human readable string.

Returns:

str

Evaluation metrics formatted as a human readable string.

madmom.evaluation.tempo.add_parser(parser)[source]

Add a tempo evaluation sub-parser to an existing parser.

Parameters:

parser : argparse parser instance

Existing argparse parser object.

Returns:

sub_parser : argparse sub-parser instance

Tempo evaluation sub-parser.

parser_group : argparse argument group

Tempo evaluation argument group.